Anonymization of nominal data based on semantic marginality
نویسندگان
چکیده
Nominal attributes are very common in data sets about individuals, specifically medical data like patient healthcare records. Attributes of this type tend to be sensitive due to their personal nature. If public-use data sets need to be released, e.g. for clinical research purposes, data should be first anonymized. However, since most anonymization methods omit data semantics when dealing with nominal attributes (e.g. in a medical data set diagnosis is a nominal attribute), anonymization results in unnecessary information loss for such attributes, which is especially serious given their analytical importance. In this paper, we present a knowledge-based numerical mapping for nominal attributes that captures and quantifies their underlying semantics. Using this mapping, we show how to compute semantically and mathematically coherent mean, variance and covariance functions for nominal attributes; we also propose a distance measure between records containing numerical and nominal attributes. Thus, the proposed mapping allows adapting to nominal data some Statistical Disclosure Control anonymization methods originally designed for numerical attributes. Evaluation results obtained for one of these methods applied to real patient discharge data shows that the use of our mapping retains better the semantics of original data and, hence, it yields anonymized data with better utility for clinical research.
منابع مشابه
Marginality: A Numerical Mapping for Enhanced Exploitation of Taxonomic Attributes
Hierarchical attributes appear in taxonomic or ontologybased data (e.g. NACE economic activities, ICD-classified diseases, animal/plant species, etc.). Such taxonomic data are often exploited as if they were flat nominal data without hierarchy, which implies losing substantial information and analytical power. We introduce marginality, a numerical mapping for taxonomic data that allows using on...
متن کاملMarginality: a numerical mapping for enhanced treatment of nominal and hierarchical attributes
The purpose of statistical disclosure control (SDC) of microdata, a.k.a. data anonymization or privacy-preserving data mining, is to publish data sets containing the answers of individual respondents in such a way that the respondents corresponding to the released records cannot be re-identified and the released data are analytically useful. SDC methods are either based on masking the original ...
متن کاملAnonymization Methods for Taxonomic Microdata
Often microdata sets contain attributes which are neither numerical nor ordinal, but take nominal values from a taxonomy, ontology or classification (e.g. diagnosis in a medical data set about patients, economic activity in an economic data set, etc.). Such data sets must be anonymized if transferred outside the data collector’s premises (e.g. hospital or national statistical office), say, for ...
متن کاملAn Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملA measure of variance for hierarchical nominal attributes
The need for measuring the dispersion of nominal categorical attributes appears in several applications, like clustering or data anonymization. For a nominal attribute whose categories can be hierarchically classified, a measure of the variance of a sample drawn from that attribute is proposed which takes the attribute’s hierarchy into account. The new measure is the reciprocal of ‘‘consanguini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 242 شماره
صفحات -
تاریخ انتشار 2013